Theory & Methods: Non‐Gaussian Conditional Linear AR(1) Models
نویسندگان
چکیده
منابع مشابه
Linear Models with Outliers: Choosing between Conditional- Mean and Conditional- Median Methods
State politics researchers commonly employ ordinary least squares (OLS) regression or one of its variants to test linear hypotheses. However, OLS is easily influenced by outliers and thus can produce misleading results when the error term distribution has heavy tails. Here we demonstrate that median regression (MR), an alternative to OLS that conditions the median of the dependent variable (rat...
متن کاملConditional Inference about Generalized Linear Mixed Models
We propose a method of inference for generalized linear mixed models Ž . GLMM that in many ways resembles the method of least squares. We also show that adequate inference about GLMM can be made based on the conditional likelihood on a subset of the random effects. One of the important features of our methods is that they rely on weak distributional assumptions about the random effects. The met...
متن کاملNon-Gaussian conditional linear AR(1) models
We give a general formulation of a non-Gaussian conditional linear AR(1) model subsuming most of the non-Gaussian AR(1) models that have appeared in the literature. We derive some general results giving properties for the stationary process mean, variance and correlation structure, and conditions for stationarity. These results highlight similarities and differences with the Gaussian AR(1) mode...
متن کاملLog-Linear Models and Conditional Random Fields
This document describes log-linear models, which are a far-reaching extension of logistic regression, and conditional random fields (CRFs), which are a special case of log-linear models. Section 1 explains what a log-linear model is, and introduces feature functions. Section 2 then presents linear-chain CRFs as an example of log-linear models, and Section 3 explains the special algorithms that ...
متن کاملModified conditional AIC in linear mixed models
In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation, and much attention has been received since suggested by Vaida and Blanchard (2005). A weak point of cAIC is that it is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Australian & New Zealand Journal of Statistics
سال: 2000
ISSN: 1369-1473,1467-842X
DOI: 10.1111/1467-842x.00143